Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease.

The Journal of clinical investigation. 2020;130(3):1453-1460

Plain language summary

Non-alcoholic fatty liver disease (NAFLD) is a common complication of obesity and is associated with multiorgan insulin resistance, dyslipidaemia and an increased risk of diabetes and coronary heart disease. The aims of this study were to (a) determine hepatic de novo lipogenesis (DNL) [the liver’s biochemical process of synthesising fatty acids] in 3 distinct cohorts, (b) determine the relationships among hepatic DNL and intrahepatic [within the liver] triglyceride (IHTG) content, and (c) determine the effect of moderate (10%) weight loss. This study is a cross-sectional study which included a total of 67 men and women (mean age: 39 ± 1 years; 14 men and 53 women). Results highlight the importance of DNL in the pathogenesis of hepatic steatosis [build up of fats in the liver] and suggest that increases in daily 24-hour plasma glucose and insulin concentrations are major drivers of increased DNL in individuals with obesity and NAFLD. Additionally, moderate (10%) weight loss caused a marked decrease in both hepatic DNL and IHTG content. Authors conclude that increases in circulating glucose and insulin promote hepatic DNL in individuals with NAFLD. Whereas an improvement in insulin sensitivity and a decrease in hepatic DNL, are potentially important contributors to the decline in IHTG content associated with moderate weight loss.

Abstract

BACKGROUNDAn increase in intrahepatic triglyceride (IHTG) is the hallmark feature of nonalcoholic fatty liver disease (NAFLD) and is decreased by weight loss. Hepatic de novo lipogenesis (DNL) contributes to steatosis in individuals with NAFLD. The physiological factors that stimulate hepatic DNL and the effect of weight loss on hepatic DNL are not clear.METHODSHepatic DNL, 24-hour integrated plasma insulin and glucose concentrations, and both liver and whole-body insulin sensitivity were determined in individuals who were lean (n = 14), obese with normal IHTG content (n = 26), or obese with NAFLD (n = 27). Hepatic DNL was assessed using the deuterated water method corrected for the potential confounding contribution of adipose tissue DNL. Liver and whole-body insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp procedure in conjunction with glucose tracer infusion. Six subjects in the obese-NAFLD group were also evaluated before and after a diet-induced weight loss of 10%.RESULTSThe contribution of hepatic DNL to IHTG-palmitate was 11%, 19%, and 38% in the lean, obese, and obese-NAFLD groups, respectively. Hepatic DNL was inversely correlated with hepatic and whole-body insulin sensitivity, but directly correlated with 24-hour plasma glucose and insulin concentrations. Weight loss decreased IHTG content, in conjunction with a decrease in hepatic DNL and 24-hour plasma glucose and insulin concentrations.CONCLUSIONSThese data suggest hepatic DNL is an important regulator of IHTG content and that increases in circulating glucose and insulin stimulate hepatic DNL in individuals with NAFLD. Weight loss decreased IHTG content, at least in part, by decreasing hepatic DNL.TRIAL REGISTRATIONClinicalTrials.gov NCT02706262.FUNDINGThis study was supported by NIH grants DK56341 (Nutrition Obesity Research Center), DK20579 (Diabetes Research Center), DK52574 (Digestive Disease Research Center), and RR024992 (Clinical and Translational Science Award), and by grants from the Academy of Nutrition and Dietetics Foundation, the College of Natural Resources of UCB, and the Pershing Square Foundation.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Immune and inflammation
Patient Centred Factors : Mediators/Insulin resistance
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Imaging

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata